The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions
نویسندگان
چکیده
منابع مشابه
EXISTENCE OF MULTIPLE NONTRIVIAL SOLUTIONS FOR A p-KIRCHHOFF TYPE ELLIPTIC PROBLEM INVOLVING SIGN-CHANGING WEIGHT FUNCTIONS
This paper deals with a p-Kirchhoff type problem involving signchanging weight functions. It is shown that under certain conditions, by means of variational methods, the existence of multiple nontrivial nonnegative solutions for the problem with the subcritical exponent are obtained. Moreover, in the case of critical exponent, we establish the existence of the solutions and prove that the ellip...
متن کاملthe nehari manifold for a navier boundary value problem involving the p-biharmonic
in this paper, we study the nehari manifold and its application on the following navier boundary valueproblem involving the p-biharmonic 0, on( ) 1 ( , ) , in , 2*2u uf x u u upu u p q where is a bounded domain in rn with smooth boundary . we prove that the problem has atleast two nontrivial nonnegtive solutions when the parameter belongs to a certain subset o...
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملThe Nehari Manifold for Fractional Systems Involving Critical Nonlinearities
We study the combined effect of concave and convex nonlinearities on the number of positive solutions for a fractional system involving critical Sobolev exponents. With the help of the Nehari manifold, we prove that the system admits at least two positive solutions when the pair of parameters (λ, μ) belongs to a suitable subset of R.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2011
ISSN: 0022-0396
DOI: 10.1016/j.jde.2010.11.017